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Abstract— In recent years, hardware advances have resulted 
in software configurable radar systems that lend themselves well 
to decision-making systems. Partially observable Markov decision 
processes (POMDPs) are evaluated herein as a framework for 
decision-making in radar scenarios, and value iteration is 
examined as a method for computing an optimal decision policy 
with a POMDP. A scenario is investigated wherein a radar is 
competing with a greedy agent for spectrum. Results demonstrate 
improvement over a heuristic decision-making agent that seeks to 
maximize immediate reward.  

I. INTRODUCTION 

Improvements in radio frequency hardware and embedded 
computing enable a new class of wideband, multichannel, 
configurable radar systems with the potential to adapt to vastly 
changing characteristics in the operating environment. These 
systems are a marked change from years past, where radar 
systems were custom-designed to operate within stringent 
constraints, such as a narrow frequency allocation, and operating 
mode (e.g., airport terminal wind shear monitoring). 
Contemporary radar designs include all-digital arrays with 
arbitrary waveform generation at the element level, 10:1 
operating frequency range, and highly flexible back-end 
processing. The ability to automatically and dynamically 
manipulate the configuration settings of software-defined radars 
opens up the possibility for enhanced performance in 
environments where spectrum access is competitive, dynamic, 
and conflicted by multi-user operating needs.  

 A cognitive radar interacts with the environment, senses the 
corresponding response, and then attempts to optimize resource 
allocations to achieve desired objectives, such as access to 
contiguous spectrum bands over a sufficient time duration to 
generate a high quality, high range resolution target profile. In 
[1], cognitive radar is described from the perspective of the 
perception-action cycle, as shown in Figure 1.  An alternative, 

  
Figure 1: The Perception-Action Cycle 

Figure 2: POMDP perception-action cycle. 

but related, view given in [2] is based on the Rasmussen model 
commonly used in robotics and human factors engineering, 
which asserts the perception-action cycle on three levels: the 
skill-based layer, the rule-based layer, and the knowledge-based 
layer. The Rasmussen model suggests an implementation 
strategy based on the use of a partially observable Markov 
decision processes (POMDP). A number of papers on cognitive 
radar focus on radar enhancement techniques leveraging prior 
knowledge through parametric, model-based strategies [3-5], or 
machine learning algorithms for perception functions [6-7], thus 
differing substantially from the POMDP approach involving 
implementation of the perception-action cycle.   

A POMDP includes agent states, observations, a transition 
model, and costs/rewards for various actions. A policy is a 
course of action for various observables and exists for a 
specified horizon.  In this paper, we investigate the application 
of cognitive radar using the POMDP approach for the case of a 
radar competing for contiguous spectrum slots with another user 
who wishes to maximize its own access to spectrum. 

The rest of this paper is organized as follows. Section II gives 
an overview of POMDPs and value iteration algorithms for 
computing optimal policies. In Section III, we describe the 
POMDP model used for our experiments. We present simulation 
results and discussion in Section IV.  

II. POMDPS & VALUE ITERATION 

A. The POMDP Model 

A POMDP is an extension of a Markov Decision Process 
(MDP) where uncertainty in environment state is embedded into 
the model. In an MDP, although there may exist uncertainty in 
the effects of an agent’s actions, the agent always is completely 
aware of the environment state [8]. Given the uncertainty 
inherent to the radar environment, POMDPs are the more 
desirable model for radar scenarios.  A POMDP is defined by 
the tuple 𝑆, Ω, 𝐴, 𝑇, 𝑂, 𝑅, 𝛾, where 𝑆 is a discrete set of states, 
Ω is a discrete set of observations, 𝐴 is a discrete set of actions, 
𝑇  is a state transition matrix for the states in 𝑆 , 𝑂  is an 
observation probability matrix for the observations in 𝛺, 𝑅 is a 
reward matrix, and 𝛾 is a reward discount factor between zero 
and one [9]. One example of a POMDP is the two-state tiger 
problem, where an agent is faced with two doors, one of which 
has a tiger behind it [10]. The actions are opening door A, 
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opening door B, or listening for the tiger. The observations are 
that the tiger is behind door A or door B.  Clearly, the agent 
would prefer to open the door that does not have the tiger behind 
it.  

In a POMDP, at a given time step, an agent lies in a state 𝑠 ∈
𝑆 , and takes an action 𝑎 ∈ 𝐴 . The agent then immediately 
receives a reward 𝑅(𝑠, 𝑎), transitions to a new state 𝑠′ ∈ 𝑆, and 
receives an observation 𝑜 ∈ Ω . Figure 2 demonstrates the 
relationship of the POMDP dynamics to the perception-action 
cycle. The agent maintains a belief state 𝑏 for every time step, 
whereupon receiving a new observation after taking action 𝑎 
and transitioning to 𝑠 , the new belief state 𝑏′ is given by  

𝑏′ (𝑠′ ) =
O(o,s',a) ∑ T(s, s', a)b(s)s∈S

∑ O(o, s',a) ∑ T(s, s',a)b(s)s∈Ss'∈S
(1) 

where b'(s) denotes the probability of being in state s according 
to the agent belief state, O(o, s', a) is the probability of receiving 
observation o after taking action a and transitioning to state s', 
and T(s, s', a) is the probability of transitioning to state s' after 
taking action a in state  s. The goal of the decision making agent 
is to maximize the total discounted reward (we have some 
discount factor 𝛾  as part of a POMDP which effects how 
influential future rewards are at in the value function) over a 
horizon of K time steps: 

Rtot= γR(si,ai)

K

i=1

(2) 

 We seek to compute an optimal policy 𝜋∗  that the 
continuous belief space can be mapped into to maximize the 
expected sum of discounted rewards. In the tiger POMDP, the 
optimal policy is to take the listen action until the belief state 
enters some region of the space which corresponds to the tiger 
lying behind one of the doors, and then open the opposite door.  

B. Value Iteration for computing optimal policies 

There exist a number of methods for computing the optimal 
policy for a POMDP [11]. One commonly used method for 
computing optimal policies is value iteration. In this work, the 
incremental pruning algorithm is used [12-13]. Here, an 
overview of value iteration and the incremental pruning 
algorithm are given.  

A value function is a mapping from a belief state 𝑏′  to 
expected discounted reward. A value function 𝑉′ includes an 
additional step of reward from the previous value function. 𝑉′ is 
given as  

V'(b)= max   
a∈A

(ra
T b + γ O(o, s', a)𝑉(𝑏)

o∈O

) (3) 

The authors of [13] decompose (3) into the following equations: 

𝑉 (𝑏) = max
∈  

𝑉 (𝑏) (4) 

𝑉 (𝑏) = 𝑉 (𝑏)

∈

(5) 

𝑉 (𝑏) =
∑ ( ) ( )

| |
+ 𝛾𝑂(𝑜, 𝑠 , 𝑎)𝑉(𝑏 ) (6)

Where | ∙ | is the cardinality operator. In [14], Smallwood & 

Figure 3: Tiger POMDP Value Function. pleft represents the probability that the 
tiger is behind the left door according to the agent belief state. The shaded 
regions represent the corresponding optimal action to the regions in belief space 
The black lines represent the portion of each line that does not lie at the 
maximum of the value function. The red lines represent the maximum of the 
value function.  

Sondik prove that the value function 𝑉(𝑏) is piecewise linear 
and convex and can, thus, be written as  

𝑉(𝑏) = max
∈

𝑏 𝜆 (7) 

for 𝜆 in a finite set of |S|-vectors Λ. [13] proceeds by rewriting 
(4)-(6) as 𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏,𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏, and  

𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏  for some finite sets of |𝑆|-vectors Λ′ , 
Λ , and Λ . These sets of vectors are given by  

Λ = 𝑝𝑢𝑟𝑔𝑒 Λ
∈

(8) 

Λ = 𝑝𝑢𝑟𝑔𝑒
∈

Λ (9) 

Λ = 𝑝𝑢𝑟𝑔𝑒({𝜏(𝜆, 𝑎, 𝑜)|𝜆 ∈ Λ}) (10) 

Where 𝑝𝑢𝑟𝑔𝑒(∙) is a function defined below that reduces a set 
of vectors to its minimum size representation, 𝜏(𝜆, 𝑎, 𝑜) is the 

vector given by 𝜏(𝜆, 𝑎, 𝑜)(𝑠) =
( )

| |
+

𝛾 ∑ 𝜆(𝑠 )𝑂(𝑜, 𝑠 , 𝑎)𝑇(𝑠 , 𝑠, 𝑎), and the cross sum of two sets 
of vectors 𝐴 ⨁ 𝐵 is given by 𝐴 ⨁ 𝐵 =  {𝛼 + 𝛽| 𝛼 ∈ 𝐴, 𝛽 ∈
𝐵}}.  

 For a set of vectors 𝐴 and an additional vector 𝜆, the witness 
region is the set of information states for which vector 𝜆 has the 
largest dot product compared to other vectors in 𝐴, given by: 

𝑅(𝜆, 𝐴) =  {𝑏|𝑏 ≥ 0, 𝑏 𝟏 = 1, 𝑏 𝜆 > 𝑏 𝜆  ∀ 𝜆′ ∈ 𝐴} (11) 

We can define the 𝑝𝑢𝑟𝑔𝑒 function using (11): 

𝑝𝑢𝑟𝑔𝑒(𝐴) =  {𝜆|𝜆 ∈ 𝐴, 𝑅(𝜆, 𝐴) ≠ 0} (12) 

This function takes as input a set of vectors 𝐴 and returns the 
vectors in A with non-empty witness regions. The 
implementation in [13] (FILTER) uses a linear programming 
approach for finding points in belief space, where a single vector 
is dominant over all others in the set (i.e., this vector has the 
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maximal dot product with the points in this region as compared 
to the rest of vectors in the set). We refer the reader to [13] and 
[15] for the more technical details of this algorithm.  

 The incremental pruning algorithm relies on an efficient 
implementation of (7). We note that 𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁ 𝐵 ⨁ 𝐶) =
𝑝𝑢𝑟𝑔𝑒(𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁ 𝐵) ⨁ 𝐶). We can thus write (7) as  

Λ = 𝑝𝑢𝑟𝑔𝑒 … 𝑝𝑢𝑟𝑔𝑒 𝑝𝑢𝑟𝑔𝑒 Λ ⨁Λ ⨁Λ   … ⨁Λ  

(13) 

The incremental pruning algorithm proceeds by initializing with 
an empty set 𝑊, populates W with vectors in the cross sum of 
Λ  and Λ  that have a non-empty witness region, and then 
iteratively applies the aforementioned FILTER algorithm to the 
cross-sum of 𝑊  and Λ

 
. We can then purge Λ  and carry 

actions along to obtain the set of vectors that represent Λ′. An 
example of the value function for the tiger POMDP mentioned 
in Section 2 can be seen in Figure 3. Note that all of the lines in 
the lie at the maximum of the value function at some point in the 
belief space. The red lines indicate the maximum of the value 
function at any point in the belief space. 

 Complexity analysis of the incremental pruning algorithm is 
discussed in depth in [13]. We remark that the advantage of 
implementing the algorithm as in (13) comes from the fact that 
if 𝐴 = 𝑝𝑢𝑟𝑔𝑒(𝐴) , 𝐵 = 𝑝𝑢𝑟𝑔𝑒(𝐵) , and 𝑊 = 𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁𝐵) , 
then |𝑊| ≥ max (|𝐴|, |𝐵|) . Thus, the size of 𝑊  in the 
incremental pruning algorithm is monotonically non-decreasing. 
Cassandra, et al. [13] also discuss more general implementations 
of incremental pruning. For our work, we apply the FILTER 
algorithm proposed in [15] for purging sets of vectors. 

III. GREEDY RADAR SCENARIO AS A POMDP 

In this section, we seek to model the scenario where a radar 
is competing with a benign agent for two spectrum slots as a 
POMDP. The benign agent is operating in some configuration 
of the available spectrum slots at each given time step. The goal 
of the radar is to transmit without colliding with the other user 
of the spectrum. The radar also has some ability to influence the 
behavior of the benign agent. If the radar transmits and collides 
with the benign agent, the benign agent may move to an 
unoccupied spectrum slot or stop transmitting completely. The 
radar can also spoof in an attempt to force the benign agent out 
of its current configuration, with a greater success chance than a 
normal transmission. In some circumstances spoofing can be 
more desirable, because the radar is more certain to influence 
the behavior of the benign agent.  

To capture this scenario in a POMDP, we must define the 
tuple as in Section II. This scenario has a total of four states, 
where the benign agent is not present in the spectrum (both slots 
free), the benign agent occupies only slot one, the benign agent 
occupies only slot two, or the benign agent occupies both 
spectrum slots. For the set of actions, the radar can transmit in 
any of the non-empty slot configurations or spoof in any of these 
configurations. We also include the action of ‘sensing,’ where 
the radar senses the environment but occupies no spectrum slots.  
These options give a total of seven actions. The set of 
observations is simply the set of states. The radar has some 

chance of observing the new state of the environment given the 
new state 𝑠′ and action 𝑎.  

For the reward matrix, if the radar takes a transmit action and 
the environment state is such to avoid collision with the benign 
agent, the radar is rewarded. If the environment state is such that 
the radar transmits in a slot occupied by the benign agent, the 
radar is assessed a penalty. The radar is penalized for taking the 
sensing action and penalized (albeit less harshly) for taking a 
spoof action.  

For the observation probability matrix, we define a transmit 
certainty parameter 𝑐 , a spoof certainty parameter 𝑐 , and a 
sensing certainty parameter 𝑐 , which are the probabilities       
of correctly observing the state given the radar transmits,                   
spoofs, or senses, respectively (typical values used are 
𝑐 ~[. 4, .6], 𝑐 ~ [. 7, .9], 𝑐 ~[.95, .99] . The sets 𝐴 ⊂ 𝐴 , 
𝐴 ⊂ 𝐴 , and 𝐴 ⊂ 𝐴  are denoted as the sets of actions 
corresponding to transmit, spoof, and sensing actions, 
respectively. The quantity q(a) is defined as  

𝑞(𝑎) =  𝑐 𝟙 (𝑎) + 𝑐 𝟙 (𝑎) + 𝑐 𝟙 (𝑎) (14) 

Where 𝟙 (𝑎) is the indicator function, defined as 

𝟙 (𝑎) =
 1,     𝑖𝑓 𝑎 ∈ 𝐴
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15) 

𝑂(𝑜, 𝑠 , 𝑎) is then given by  

𝑂(𝑜, 𝑠 , 𝑎) =  

𝑞(𝑎)        𝑖𝑓 𝑜 = 𝑠

1 − 𝑞(𝑎)

|𝑆| − 1
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16) 

 For the transition probability matrix, similar parameters are 
defined as before for the amount of influence that an action has 
over the benign agent. The terms 𝑚 , 𝑚  are the transmit and 
spoof influence parameters, which denote the total probability 
that the benign agent will move to a state not including any of 
the slots occupied by the radar (typical values are 𝑚 ~[.4, .6], 
𝑚 ~[.8, .9] ). Define 𝑆  as the set of states that have a 
frequency slot in common with the radar’s current configuration 
when the radar takes action 𝑎. The quantity 𝑝(𝑎)  is defined as  

𝑝(𝑎) = 𝑚 𝟙 (𝑎) + 𝑚 𝟙 (𝑎) (17) 

For the sensing action (a = 1), take the state transition matrix to 
be the identity matrix (i.e., the benign agent maintains its state 
configuration if the radar chooses to stay silent for a time step). 
Otherwise, 𝑇(𝑠, 𝑠 , 𝑎) is given by: 

𝑇(𝑠, 𝑠 , 𝑎) =  

⎩
⎪
⎨

⎪
⎧ 𝑝(𝑎)

|𝑆| − |𝑆 |
 𝑖𝑓 𝑠 ∉ 𝑆

1 − 𝑝(𝑎)

|𝑆 |
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18) 

We now remark on a disadvantage we have encountered with 
the use of POMDPs. POMDPs present a very rigid model, and 
significant deliberation is necessary to completely capture a 
dynamic scenario as a POMDP. Such a rigid model may be 
especially problematic if the radar environment is nonstationary. 
In this work, the radar is assumed to have access to a POMDP 
model through some form of learning or observation. A simple 
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radar scenario is considered with only two spectrum slots. 
Moving to more than two slots would require significantly more 
state enumeration. The incremental pruning algorithm would 
also grow significantly in computational complexity, as the main 
component in the algorithm involves the solving of linear 
programs that become large as the number of states and actions 
grows. 

IV. SIMULATION RESULTS 

In this section, simulation results are detailed for the 
POMDP approach to decision making. The Incremental Pruning 
algorithm was implemented in MATLAB, and all linear 
programming was implemented using the optimization 
toolbox’s linprog function. We profiled the code for our 
experiments, and over 90% of the runtime was spent solving 
linear programs. 

Naturally, a more efficient linear program solver would have a 
faster runtime. Also, a number of other algorithms for 
approximate value iteration exist that show interesting results 
and characteristics. [11, 16]. 

 For our experiments, we compare the performance of the 
decision-making agent to a heuristic agent that simply selects 
the most rewarding action based on the most recent observation. 
For example, if the agent receives the observation that the 
benign agent is occupying no portion of the spectrum, the agent 
would transmit in both slots for its next action. We compute the 
optimal policy for the radar for a horizon of five time steps. We 
simulate the scenario for a total of 25 time steps. The increased 
number of states of this environment prevents visualization of 
the value function surface as in Figure 3. Instead, a time-
frequency diagram is presented for both the intelligent agent and 
the heuristic agent. Figure 4 demonstrates a comparison of the 
time-frequency diagrams of the intelligent agent and the 
heuristic agent. In this example, observation matrix parameters 
𝑐 =  0.5 , 𝑐 =  0.9 , 𝑐 =  0.99  and transition influence 
parameters 𝑚 =  0.5 , 𝑚 =  0.9  were chosen. Note that, 
while both agents are subject to the same initial conditions and 
take the same first action, the total state progression diverges 
over time. Fewer spectrum collisions are desirable, and the 
intelligent agent can be seen to yield substantially better results. 
In this example, the intelligent agent generated a collision 

 

   (a)                                                     (b) 

Figure 4: (a) Time-frequency diagram for the intelligent agent over 25 time steps. 
(b) Time-frequency diagram for the heuristic agent over 25 time steps.  

 
Figure 5: Bar chart demonstrating overall behavior of the two decision-making 
agents over 2000 time steps. Asns, Atx, Asp correspond to the intelligent agent 
sensing, transmitting, and spoofing, respectively while Hsns, Htx, Hsp correspond 
to the heuristic agent sensing, and spoofing, respectively. The vertical axis 
indicates the total number of times an action was taken. 

penalty of 2, while the heuristic agent generated a collision 
penalty of 11. The intelligent agent also has a significantly 
higher reward score according to the reward matrix as a result of 
the great reduction in the number of collisions.  A longer 
simulation was run over 2000 time steps to get a sense of the 
overall behavior of the two agents. Figure 5 characterizes the 
overall behavior of the two agents. Note that the heuristic agent 
does not take the sensing action. Sensing is never the most 
rewarding action in any of the states and can t hus be 
interpreted as an information-gaining action. The intelligent 
agent tends to sense when it is unsure of the environment. Also 
note that the intelligent agent not only has significantly fewer 
collisions with the benign agent than the heuristic agent but also 
correctly spoofs the benign agent out of its spectrum 
configuration more often. The goal of the decision-making agent 
is to maximize reward. In these results, this goal is achieved by 
minimizing the number of collisions, which also happens to 
have the greatest penalty. 

V. CONCLUSION 

POMDPs have been evaluated as a framework for radar 
decision making.  One incarnation of the Incremental Pruning 
Algorithm has been applied for value iteration and computation 
of an optimal decision policy that maximizes discounted 
reward. Results were simulated for a scenario where a radar 
competes with a benign spectrum user for spectrum slots. These 
results demonstrate a clear improvement over maximizing 
immediate reward and suggest the usefulness of POMDPs for 
decision making and planning. 
 

REFERENCES 

 
[1] Haykin, S., “Cognitive dynamic systems: radar, control, radio,” 

Proceedings of the IEEE, Vol. 100, No. 7, July 2012, pp. 2095-2103. 

[2] Ender, J.H.G., “Cognitive radar – enabling techniques for next generation 
radar systems,” in Proc. 16th Int’l Radar Symposium, Vol. I, Dresden, 
Germany, June 2015, pp. 3-12. 

[3] Guerci, J. R., “Cognitive radar: a knowledge-aided fully adaptive 
approach,” in Proc. 2010 IEEE Radar Conf., May 2010, pp. 1365-1370. 

1665

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore.  Restrictions apply. 



[4] Romero, R. A. and Goodman, N. A., “Cognitive radar network: 
cooperative adaptive beamsteering for integrated search-and-track 
application,” IEEE Transactions on Aerospace and Electronic Systems, 
Vol. 49, No. 2, 2013, pp. 915-931. 

[5] Zhang, J., Qiu, X., Shi, C., and Wu, Y., “Cognitive radar ambiguity 
function optimization for unimodular sequence,” EURASIP Journal on 
Advances in Signal Processing, 2016(1), 31. 

[6] Charlish, A., and Hoffmann, F., “Anticipation in cognitive radar using 
stochastic control,” in Proc. IEEE Radar Conf., May 2015, pp. 1692-
1697. 

[7] Stinco, P., Greco, M., Gini, F., and Himed, B., “Cognitive radars in 
spectrally dense environments,” IEEE Aerospace and Electronic Systems 
Magazine, 31(10), 2016, pp. 20-27. 

[8] Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1995, December). 
Partially observable markov decision processes for artificial intelligence. 
In International Workshop on Reasoning with Uncertainty in 
Robotics (pp. 146-163). Springer, Berlin, Heidelberg. 

[9] Cassandra, A. R., Kaelbling, L. P., & Littman, M. L., “Acting optimally 
in partially observable stochastic domains,” in Assosiaction for the 
Advancement of Artificial Intelligence, Vol. 94, October 1994, pp. 1023-
1028. 

[10] Cassandra, A. R. (1994). Optimal policies for partially observable 
Markov decision processes. Report CS-94-14, Brown Univ. 

[11] Murphy, K. P. (2000). A survey of POMDP solution 
techniques. Environment, 2, X3. 

[12] Zhang, N. L., and Liu, W., Planning in stochastic domains: problem 
characteristics and approximation, Technical Report HKUST-CS96-31, 
Hong Kong University of Science and Technology, 1996.  

[13] Cassandra, A., Littman, M. L., and Zhang, N. L., “Incremental pruning: 
A simple, fast, exact method for partially observable Markov decision 
processes,” in Proceedings of the Thirteenth Conference on Uncertainty 
in Artificial Intelligence, Morgan Kaufmann Publishers Inc., August 
1997, pp. 54-61. 

[14] Smallwood, R. D., & Sondik, E. J. (1973). “The optimal control of 
partially observable Markov processes over a finite horizon,”   Operations 
Research, 21(5), 1071-1088. 

[15] White, C. C. (1991). “A survey of solution techniques for the partially 
observed Markov decision process,” Annals of Operations 
Research, 32(1), 215-230. 

[16] Aberdeen, D. (2003). A (revised) survey of approximate methods for 
solving partially observable Markov decision processes. Technical report, 
National ICT Australia. 

 

 

 

 

1666

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore.  Restrictions apply. 


