
Application of POMDPs to Cognitive Radar
Charles Topliff, William Melvin, Douglas Williams

Center for Signal & Information Processing
School of Electrical & Computer Engineering

Georgia Insitute of Technology, Atlanta, Georgia
ctopliff0@gatech.edu, bill.melvin@gtri.gatech.edu, doug.williams@coe.gatech.edu

Abstract— In recent years, hardware advances have resulted
in software configurable radar systems that lend themselves well
to decision-making systems. Partially observable Markov decision
processes (POMDPs) are evaluated herein as a framework for
decision-making in radar scenarios, and value iteration is
examined as a method for computing an optimal decision policy
with a POMDP. A scenario is investigated wherein a radar is
competing with a greedy agent for spectrum. Results demonstrate
improvement over a heuristic decision-making agent that seeks to
maximize immediate reward.

I. INTRODUCTION

Improvements in radio frequency hardware and embedded
computing enable a new class of wideband, multichannel,
configurable radar systems with the potential to adapt to vastly
changing characteristics in the operating environment. These
systems are a marked change from years past, where radar
systems were custom-designed to operate within stringent
constraints, such as a narrow frequency allocation, and operating
mode (e.g., airport terminal wind shear monitoring).
Contemporary radar designs include all-digital arrays with
arbitrary waveform generation at the element level, 10:1
operating frequency range, and highly flexible back-end
processing. The ability to automatically and dynamically
manipulate the configuration settings of software-defined radars
opens up the possibility for enhanced performance in
environments where spectrum access is competitive, dynamic,
and conflicted by multi-user operating needs.

 A cognitive radar interacts with the environment, senses the
corresponding response, and then attempts to optimize resource
allocations to achieve desired objectives, such as access to
contiguous spectrum bands over a sufficient time duration to
generate a high quality, high range resolution target profile. In
[1], cognitive radar is described from the perspective of the
perception-action cycle, as shown in Figure 1. An alternative,

Figure 1: The Perception-Action Cycle

Figure 2: POMDP perception-action cycle.

but related, view given in [2] is based on the Rasmussen model
commonly used in robotics and human factors engineering,
which asserts the perception-action cycle on three levels: the
skill-based layer, the rule-based layer, and the knowledge-based
layer. The Rasmussen model suggests an implementation
strategy based on the use of a partially observable Markov
decision processes (POMDP). A number of papers on cognitive
radar focus on radar enhancement techniques leveraging prior
knowledge through parametric, model-based strategies [3-5], or
machine learning algorithms for perception functions [6-7], thus
differing substantially from the POMDP approach involving
implementation of the perception-action cycle.

A POMDP includes agent states, observations, a transition
model, and costs/rewards for various actions. A policy is a
course of action for various observables and exists for a
specified horizon. In this paper, we investigate the application
of cognitive radar using the POMDP approach for the case of a
radar competing for contiguous spectrum slots with another user
who wishes to maximize its own access to spectrum.

The rest of this paper is organized as follows. Section II gives
an overview of POMDPs and value iteration algorithms for
computing optimal policies. In Section III, we describe the
POMDP model used for our experiments. We present simulation
results and discussion in Section IV.

II. POMDPS & VALUE ITERATION

A. The POMDP Model

A POMDP is an extension of a Markov Decision Process
(MDP) where uncertainty in environment state is embedded into
the model. In an MDP, although there may exist uncertainty in
the effects of an agent’s actions, the agent always is completely
aware of the environment state [8]. Given the uncertainty
inherent to the radar environment, POMDPs are the more
desirable model for radar scenarios. A POMDP is defined by
the tuple 𝑆, Ω, 𝐴, 𝑇, 𝑂, 𝑅, 𝛾, where 𝑆 is a discrete set of states,
Ω is a discrete set of observations, 𝐴 is a discrete set of actions,
𝑇 is a state transition matrix for the states in 𝑆 , 𝑂 is an
observation probability matrix for the observations in 𝛺, 𝑅 is a
reward matrix, and 𝛾 is a reward discount factor between zero
and one [9]. One example of a POMDP is the two-state tiger
problem, where an agent is faced with two doors, one of which
has a tiger behind it [10]. The actions are opening door A,

Identify applicable funding agency here. If none, delete this text box.

1662978-1-7281-4300-2/19/$31.00 ©2019 IEEE Asilomar 2019

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore. Restrictions apply.

opening door B, or listening for the tiger. The observations are
that the tiger is behind door A or door B. Clearly, the agent
would prefer to open the door that does not have the tiger behind
it.

In a POMDP, at a given time step, an agent lies in a state 𝑠 ∈
𝑆 , and takes an action 𝑎 ∈ 𝐴 . The agent then immediately
receives a reward 𝑅(𝑠, 𝑎), transitions to a new state 𝑠′ ∈ 𝑆, and
receives an observation 𝑜 ∈ Ω . Figure 2 demonstrates the
relationship of the POMDP dynamics to the perception-action
cycle. The agent maintains a belief state 𝑏 for every time step,
whereupon receiving a new observation after taking action 𝑎
and transitioning to 𝑠 , the new belief state 𝑏′ is given by

𝑏′ (𝑠′) =
O(o,s',a) ∑ T(s, s', a)b(s)s∈S

∑ O(o, s',a) ∑ T(s, s',a)b(s)s∈Ss'∈S
(1)

where b'(s) denotes the probability of being in state s according
to the agent belief state, O(o, s', a) is the probability of receiving
observation o after taking action a and transitioning to state s',
and T(s, s', a) is the probability of transitioning to state s' after
taking action a in state s. The goal of the decision making agent
is to maximize the total discounted reward (we have some
discount factor 𝛾 as part of a POMDP which effects how
influential future rewards are at in the value function) over a
horizon of K time steps:

Rtot= γR(si,ai)

K

i=1

(2)

 We seek to compute an optimal policy 𝜋∗ that the
continuous belief space can be mapped into to maximize the
expected sum of discounted rewards. In the tiger POMDP, the
optimal policy is to take the listen action until the belief state
enters some region of the space which corresponds to the tiger
lying behind one of the doors, and then open the opposite door.

B. Value Iteration for computing optimal policies

There exist a number of methods for computing the optimal
policy for a POMDP [11]. One commonly used method for
computing optimal policies is value iteration. In this work, the
incremental pruning algorithm is used [12-13]. Here, an
overview of value iteration and the incremental pruning
algorithm are given.

A value function is a mapping from a belief state 𝑏′ to
expected discounted reward. A value function 𝑉′ includes an
additional step of reward from the previous value function. 𝑉′ is
given as

V'(b)= max
a∈A

(ra
T b + γ O(o, s', a)𝑉(𝑏)

o∈O

) (3)

The authors of [13] decompose (3) into the following equations:

𝑉 (𝑏) = max
∈

𝑉 (𝑏) (4)

𝑉 (𝑏) = 𝑉 (𝑏)

∈

(5)

𝑉 (𝑏) =
∑ () ()

| |
+ 𝛾𝑂(𝑜, 𝑠 , 𝑎)𝑉(𝑏) (6)

Where | ∙ | is the cardinality operator. In [14], Smallwood &

Figure 3: Tiger POMDP Value Function. pleft represents the probability that the
tiger is behind the left door according to the agent belief state. The shaded
regions represent the corresponding optimal action to the regions in belief space
The black lines represent the portion of each line that does not lie at the
maximum of the value function. The red lines represent the maximum of the
value function.

Sondik prove that the value function 𝑉(𝑏) is piecewise linear
and convex and can, thus, be written as

𝑉(𝑏) = max
∈

𝑏 𝜆 (7)

for 𝜆 in a finite set of |S|-vectors Λ. [13] proceeds by rewriting
(4)-(6) as 𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏,𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏, and

𝑉 (𝑏) = 𝑚𝑎𝑥 ∈ 𝜆 𝑏 for some finite sets of |𝑆|-vectors Λ′ ,
Λ , and Λ . These sets of vectors are given by

Λ = 𝑝𝑢𝑟𝑔𝑒 Λ
∈

(8)

Λ = 𝑝𝑢𝑟𝑔𝑒
∈

Λ (9)

Λ = 𝑝𝑢𝑟𝑔𝑒({𝜏(𝜆, 𝑎, 𝑜)|𝜆 ∈ Λ}) (10)

Where 𝑝𝑢𝑟𝑔𝑒(∙) is a function defined below that reduces a set
of vectors to its minimum size representation, 𝜏(𝜆, 𝑎, 𝑜) is the

vector given by 𝜏(𝜆, 𝑎, 𝑜)(𝑠) =
()

| |
+

𝛾 ∑ 𝜆(𝑠)𝑂(𝑜, 𝑠 , 𝑎)𝑇(𝑠 , 𝑠, 𝑎), and the cross sum of two sets
of vectors 𝐴 ⨁ 𝐵 is given by 𝐴 ⨁ 𝐵 = {𝛼 + 𝛽| 𝛼 ∈ 𝐴, 𝛽 ∈
𝐵}}.

 For a set of vectors 𝐴 and an additional vector 𝜆, the witness
region is the set of information states for which vector 𝜆 has the
largest dot product compared to other vectors in 𝐴, given by:

𝑅(𝜆, 𝐴) = {𝑏|𝑏 ≥ 0, 𝑏 𝟏 = 1, 𝑏 𝜆 > 𝑏 𝜆 ∀ 𝜆′ ∈ 𝐴} (11)

We can define the 𝑝𝑢𝑟𝑔𝑒 function using (11):

𝑝𝑢𝑟𝑔𝑒(𝐴) = {𝜆|𝜆 ∈ 𝐴, 𝑅(𝜆, 𝐴) ≠ 0} (12)

This function takes as input a set of vectors 𝐴 and returns the
vectors in A with non-empty witness regions. The
implementation in [13] (FILTER) uses a linear programming
approach for finding points in belief space, where a single vector
is dominant over all others in the set (i.e., this vector has the

1663

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore. Restrictions apply.

maximal dot product with the points in this region as compared
to the rest of vectors in the set). We refer the reader to [13] and
[15] for the more technical details of this algorithm.

 The incremental pruning algorithm relies on an efficient
implementation of (7). We note that 𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁ 𝐵 ⨁ 𝐶) =
𝑝𝑢𝑟𝑔𝑒(𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁ 𝐵) ⨁ 𝐶). We can thus write (7) as

Λ = 𝑝𝑢𝑟𝑔𝑒 … 𝑝𝑢𝑟𝑔𝑒 𝑝𝑢𝑟𝑔𝑒 Λ ⨁Λ ⨁Λ … ⨁Λ

(13)

The incremental pruning algorithm proceeds by initializing with
an empty set 𝑊, populates W with vectors in the cross sum of
Λ and Λ that have a non-empty witness region, and then
iteratively applies the aforementioned FILTER algorithm to the
cross-sum of 𝑊 and Λ

. We can then purge Λ and carry

actions along to obtain the set of vectors that represent Λ′. An
example of the value function for the tiger POMDP mentioned
in Section 2 can be seen in Figure 3. Note that all of the lines in
the lie at the maximum of the value function at some point in the
belief space. The red lines indicate the maximum of the value
function at any point in the belief space.

 Complexity analysis of the incremental pruning algorithm is
discussed in depth in [13]. We remark that the advantage of
implementing the algorithm as in (13) comes from the fact that
if 𝐴 = 𝑝𝑢𝑟𝑔𝑒(𝐴) , 𝐵 = 𝑝𝑢𝑟𝑔𝑒(𝐵) , and 𝑊 = 𝑝𝑢𝑟𝑔𝑒(𝐴 ⨁𝐵) ,
then |𝑊| ≥ max (|𝐴|, |𝐵|) . Thus, the size of 𝑊 in the
incremental pruning algorithm is monotonically non-decreasing.
Cassandra, et al. [13] also discuss more general implementations
of incremental pruning. For our work, we apply the FILTER
algorithm proposed in [15] for purging sets of vectors.

III. GREEDY RADAR SCENARIO AS A POMDP

In this section, we seek to model the scenario where a radar
is competing with a benign agent for two spectrum slots as a
POMDP. The benign agent is operating in some configuration
of the available spectrum slots at each given time step. The goal
of the radar is to transmit without colliding with the other user
of the spectrum. The radar also has some ability to influence the
behavior of the benign agent. If the radar transmits and collides
with the benign agent, the benign agent may move to an
unoccupied spectrum slot or stop transmitting completely. The
radar can also spoof in an attempt to force the benign agent out
of its current configuration, with a greater success chance than a
normal transmission. In some circumstances spoofing can be
more desirable, because the radar is more certain to influence
the behavior of the benign agent.

To capture this scenario in a POMDP, we must define the
tuple as in Section II. This scenario has a total of four states,
where the benign agent is not present in the spectrum (both slots
free), the benign agent occupies only slot one, the benign agent
occupies only slot two, or the benign agent occupies both
spectrum slots. For the set of actions, the radar can transmit in
any of the non-empty slot configurations or spoof in any of these
configurations. We also include the action of ‘sensing,’ where
the radar senses the environment but occupies no spectrum slots.
These options give a total of seven actions. The set of
observations is simply the set of states. The radar has some

chance of observing the new state of the environment given the
new state 𝑠′ and action 𝑎.

For the reward matrix, if the radar takes a transmit action and
the environment state is such to avoid collision with the benign
agent, the radar is rewarded. If the environment state is such that
the radar transmits in a slot occupied by the benign agent, the
radar is assessed a penalty. The radar is penalized for taking the
sensing action and penalized (albeit less harshly) for taking a
spoof action.

For the observation probability matrix, we define a transmit
certainty parameter 𝑐 , a spoof certainty parameter 𝑐 , and a
sensing certainty parameter 𝑐 , which are the probabilities
of correctly observing the state given the radar transmits,
spoofs, or senses, respectively (typical values used are
𝑐 ~[. 4, .6], 𝑐 ~ [. 7, .9], 𝑐 ~[.95, .99] . The sets 𝐴 ⊂ 𝐴 ,
𝐴 ⊂ 𝐴 , and 𝐴 ⊂ 𝐴 are denoted as the sets of actions
corresponding to transmit, spoof, and sensing actions,
respectively. The quantity q(a) is defined as

𝑞(𝑎) = 𝑐 𝟙 (𝑎) + 𝑐 𝟙 (𝑎) + 𝑐 𝟙 (𝑎) (14)

Where 𝟙 (𝑎) is the indicator function, defined as

𝟙 (𝑎) =
 1, 𝑖𝑓 𝑎 ∈ 𝐴
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15)

𝑂(𝑜, 𝑠 , 𝑎) is then given by

𝑂(𝑜, 𝑠 , 𝑎) =

𝑞(𝑎) 𝑖𝑓 𝑜 = 𝑠

1 − 𝑞(𝑎)

|𝑆| − 1
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

 For the transition probability matrix, similar parameters are
defined as before for the amount of influence that an action has
over the benign agent. The terms 𝑚 , 𝑚 are the transmit and
spoof influence parameters, which denote the total probability
that the benign agent will move to a state not including any of
the slots occupied by the radar (typical values are 𝑚 ~[.4, .6],
𝑚 ~[.8, .9]). Define 𝑆 as the set of states that have a
frequency slot in common with the radar’s current configuration
when the radar takes action 𝑎. The quantity 𝑝(𝑎) is defined as

𝑝(𝑎) = 𝑚 𝟙 (𝑎) + 𝑚 𝟙 (𝑎) (17)

For the sensing action (a = 1), take the state transition matrix to
be the identity matrix (i.e., the benign agent maintains its state
configuration if the radar chooses to stay silent for a time step).
Otherwise, 𝑇(𝑠, 𝑠 , 𝑎) is given by:

𝑇(𝑠, 𝑠 , 𝑎) =

⎩
⎪
⎨

⎪
⎧ 𝑝(𝑎)

|𝑆| − |𝑆 |
 𝑖𝑓 𝑠 ∉ 𝑆

1 − 𝑝(𝑎)

|𝑆 |
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

We now remark on a disadvantage we have encountered with
the use of POMDPs. POMDPs present a very rigid model, and
significant deliberation is necessary to completely capture a
dynamic scenario as a POMDP. Such a rigid model may be
especially problematic if the radar environment is nonstationary.
In this work, the radar is assumed to have access to a POMDP
model through some form of learning or observation. A simple

1664

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore. Restrictions apply.

radar scenario is considered with only two spectrum slots.
Moving to more than two slots would require significantly more
state enumeration. The incremental pruning algorithm would
also grow significantly in computational complexity, as the main
component in the algorithm involves the solving of linear
programs that become large as the number of states and actions
grows.

IV. SIMULATION RESULTS

In this section, simulation results are detailed for the
POMDP approach to decision making. The Incremental Pruning
algorithm was implemented in MATLAB, and all linear
programming was implemented using the optimization
toolbox’s linprog function. We profiled the code for our
experiments, and over 90% of the runtime was spent solving
linear programs.

Naturally, a more efficient linear program solver would have a
faster runtime. Also, a number of other algorithms for
approximate value iteration exist that show interesting results
and characteristics. [11, 16].

 For our experiments, we compare the performance of the
decision-making agent to a heuristic agent that simply selects
the most rewarding action based on the most recent observation.
For example, if the agent receives the observation that the
benign agent is occupying no portion of the spectrum, the agent
would transmit in both slots for its next action. We compute the
optimal policy for the radar for a horizon of five time steps. We
simulate the scenario for a total of 25 time steps. The increased
number of states of this environment prevents visualization of
the value function surface as in Figure 3. Instead, a time-
frequency diagram is presented for both the intelligent agent and
the heuristic agent. Figure 4 demonstrates a comparison of the
time-frequency diagrams of the intelligent agent and the
heuristic agent. In this example, observation matrix parameters
𝑐 = 0.5 , 𝑐 = 0.9 , 𝑐 = 0.99 and transition influence
parameters 𝑚 = 0.5 , 𝑚 = 0.9 were chosen. Note that,
while both agents are subject to the same initial conditions and
take the same first action, the total state progression diverges
over time. Fewer spectrum collisions are desirable, and the
intelligent agent can be seen to yield substantially better results.
In this example, the intelligent agent generated a collision

 (a) (b)

Figure 4: (a) Time-frequency diagram for the intelligent agent over 25 time steps.
(b) Time-frequency diagram for the heuristic agent over 25 time steps.

Figure 5: Bar chart demonstrating overall behavior of the two decision-making
agents over 2000 time steps. Asns, Atx, Asp correspond to the intelligent agent
sensing, transmitting, and spoofing, respectively while Hsns, Htx, Hsp correspond
to the heuristic agent sensing, and spoofing, respectively. The vertical axis
indicates the total number of times an action was taken.

penalty of 2, while the heuristic agent generated a collision
penalty of 11. The intelligent agent also has a significantly
higher reward score according to the reward matrix as a result of
the great reduction in the number of collisions. A longer
simulation was run over 2000 time steps to get a sense of the
overall behavior of the two agents. Figure 5 characterizes the
overall behavior of the two agents. Note that the heuristic agent
does not take the sensing action. Sensing is never the most
rewarding action in any of the states and can t hus be
interpreted as an information-gaining action. The intelligent
agent tends to sense when it is unsure of the environment. Also
note that the intelligent agent not only has significantly fewer
collisions with the benign agent than the heuristic agent but also
correctly spoofs the benign agent out of its spectrum
configuration more often. The goal of the decision-making agent
is to maximize reward. In these results, this goal is achieved by
minimizing the number of collisions, which also happens to
have the greatest penalty.

V. CONCLUSION

POMDPs have been evaluated as a framework for radar
decision making. One incarnation of the Incremental Pruning
Algorithm has been applied for value iteration and computation
of an optimal decision policy that maximizes discounted
reward. Results were simulated for a scenario where a radar
competes with a benign spectrum user for spectrum slots. These
results demonstrate a clear improvement over maximizing
immediate reward and suggest the usefulness of POMDPs for
decision making and planning.

REFERENCES

[1] Haykin, S., “Cognitive dynamic systems: radar, control, radio,”

Proceedings of the IEEE, Vol. 100, No. 7, July 2012, pp. 2095-2103.

[2] Ender, J.H.G., “Cognitive radar – enabling techniques for next generation
radar systems,” in Proc. 16th Int’l Radar Symposium, Vol. I, Dresden,
Germany, June 2015, pp. 3-12.

[3] Guerci, J. R., “Cognitive radar: a knowledge-aided fully adaptive
approach,” in Proc. 2010 IEEE Radar Conf., May 2010, pp. 1365-1370.

1665

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore. Restrictions apply.

[4] Romero, R. A. and Goodman, N. A., “Cognitive radar network:
cooperative adaptive beamsteering for integrated search-and-track
application,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 49, No. 2, 2013, pp. 915-931.

[5] Zhang, J., Qiu, X., Shi, C., and Wu, Y., “Cognitive radar ambiguity
function optimization for unimodular sequence,” EURASIP Journal on
Advances in Signal Processing, 2016(1), 31.

[6] Charlish, A., and Hoffmann, F., “Anticipation in cognitive radar using
stochastic control,” in Proc. IEEE Radar Conf., May 2015, pp. 1692-
1697.

[7] Stinco, P., Greco, M., Gini, F., and Himed, B., “Cognitive radars in
spectrally dense environments,” IEEE Aerospace and Electronic Systems
Magazine, 31(10), 2016, pp. 20-27.

[8] Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1995, December).
Partially observable markov decision processes for artificial intelligence.
In International Workshop on Reasoning with Uncertainty in
Robotics (pp. 146-163). Springer, Berlin, Heidelberg.

[9] Cassandra, A. R., Kaelbling, L. P., & Littman, M. L., “Acting optimally
in partially observable stochastic domains,” in Assosiaction for the
Advancement of Artificial Intelligence, Vol. 94, October 1994, pp. 1023-
1028.

[10] Cassandra, A. R. (1994). Optimal policies for partially observable
Markov decision processes. Report CS-94-14, Brown Univ.

[11] Murphy, K. P. (2000). A survey of POMDP solution
techniques. Environment, 2, X3.

[12] Zhang, N. L., and Liu, W., Planning in stochastic domains: problem
characteristics and approximation, Technical Report HKUST-CS96-31,
Hong Kong University of Science and Technology, 1996.

[13] Cassandra, A., Littman, M. L., and Zhang, N. L., “Incremental pruning:
A simple, fast, exact method for partially observable Markov decision
processes,” in Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence, Morgan Kaufmann Publishers Inc., August
1997, pp. 54-61.

[14] Smallwood, R. D., & Sondik, E. J. (1973). “The optimal control of
partially observable Markov processes over a finite horizon,” Operations
Research, 21(5), 1071-1088.

[15] White, C. C. (1991). “A survey of solution techniques for the partially
observed Markov decision process,” Annals of Operations
Research, 32(1), 215-230.

[16] Aberdeen, D. (2003). A (revised) survey of approximate methods for
solving partially observable Markov decision processes. Technical report,
National ICT Australia.

1666

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 28,2021 at 22:52:48 UTC from IEEE Xplore. Restrictions apply.

